
ON THE BOREL-CANTELLI LEMMA 

BY 

H A R R Y  C O H N  

ABSTRACT 

A new variant of the "divergent" part of the Borel-Cantelli lemma for 
events derived from a Markov chain is given. Further two applications are 
considered. One of the applications refers to the denumerable Markov chain 
and the second is a new proof of the "strong" theorem corresponding to 
the "arc sine law". 

1. Introduct ion  

The celebrated Borel-Cantelli lemma ([2] and [4]) asserts that if A,, A2, ' "  is a 

sequence of arbitrary events and if ~oo__ 1 P(A.) < ~ then the probability of the 

event 

limsupA.= f y] OAk 
n = l  k = n  

is 0. If, in addition the events A1, A2, "-, are assumed to be mutually independent 

and if X~= 1P(A,) = ~ then P(lim sup A,) = 1. 

Although this lemma has a large area of applicability, in many interesting 

cases the assumption of independence fails to hold, such that extensions to 

dependent events of the second part of the Borel-Cantelli lemma prove useful. 

In this respect a notable example is provided by the events derived from the 

partial sums of independent random variables. It has been often noticed that the 

sequence of the partial sums of independent random variables forms a Markov 

chain with complicated transition probabilities. 

Several authors, among which E. Borel [3], P. Levy [9] p. 249, M. Lo~ve [11], 

K. Chung and P. Erd6s [5], S. Nash [12], J. Blum, D. Hanson and L. Koopmans 

[1] and M. Iosifescu [8] gave extensions of the Borel-Cantelli lemma to some 

dependent events. 
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Nevertheless, there are still many cases when these extensions are either not 

workable or lead to complicated proofs. 

The aim of this paper is to give a variant of Borel-Cantelli lemma that seems to 

have a wide applicability to Markov chains and in particular to the partial sums 

of independent random variables. Subsequently, we shall give an application to 

denumerable Markov chains and a relatively simple proof of a known result as to 

the partial sums of independent random variables. 

THEOREM I. Let {X,; n > 1} be a real valued Markov chain, .~,~ the a-algebra 

generated by the random variables Xm, . . . ,X  n (re, n =  1,2,.-.). Let fitrther 

{A,:n > 1} be a sequence of events with the property that for any n (n = 1,2, . . . )  

there exists a number r(n) such that A, ~ ~[(n) and either An+ 1, An+2, "'" ~ff ,~)+ 1 

or there exists a number s(n) with s(n) > n such that A,  c~ Ai = ~ for n < i < s(n) 

A o~ {r(n): n > 1} being an increasing sequence of and As(n)+l  , s ( n ) + 2 , * . * ~ @ ~ q ~ r ( n j + l ,  = 

positive integers. Denote ~.~ = ~ .  and 

(1) a t = lim sup [ sup (P{A}-  P{AIAn})] 
n--Coo A ~ ~,~r(n§ I)  

Then {at: I > 1} is a decreasing sequence. If, in addition. 

(I) ~ P(A.)--  

(II) There exists a number 5, 0 < 5 < 1 such that 

lim a~ < 5 
l~oo 

Then P {lim sup A.} > 1 - 5. 

PROOF. We shall prove firstly that the sequence {at: l > 1} is monotone. For  

that, let us consider an arbitrary N-dimensional Borelian set B and write r(n + l) 

r t .  

Denote 

A={(X , ,+2 , ' " ,X , ,+N+I)~B}  

P~'+ I (A} = P{X:,+, + A} 

Pr '+I{X;An}=P{X, ,+I=XlAn}  
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We get 

(2) 

(3) 
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P{A} = f P{AIX~,+a= x}U'+a{dx} 

P{A]A.)= fP{A]X,,+,=x}P"'+'(ax;A.} 
the last relationship being a consequence of the Chapman-Kolmogorov formula. 

Subtracting (3) from (2) and applying a standard approximation reasoning we 

obtain 

s u p  (P{A} - P{AIAn}  ) < sup (P{A} - P{AIA, ,} )  
AEo~: r(n+l)+2 A E ~ r ( n + l ) + l  

Taking now into account that {r(n): n > 1} is an increasing sequence, we 

conclude the first part of the theorem. 

Let us notice further that under the assumption (II) for any e > 0 we may 

find a number m sufficiently large such that am < c$ + e/2. 

We split now the initial sequence (A,: n > 1} into the following subsequences 

A1,Am+I, . . .  

A2, Am+2,... 

Am, A2m,... 

From (I) follows that in the above array there exists at least one row such that 

~k ~176 1 P(Amk + i) = oO 

Putting A,m+i = A ' ( n  = 1,2,...) and noticing that in the case when Ak n Aj = 

for k < j < s(k), ~4j can be omitted in what follows, we get for n sufficiently large 

(U P A;) 
k i=n 

n + N  

= 2 
i=n  

We deduce easily that 

wherefrom we get 

= P(A',+N) + P(/I',+~.A',+N_~) + ... + P(.4'n+N"" A,+" 1A,)' 

>= P(A'n+N) + P(~',+N)(A'n+N_x) - (5 + e)P(A'N+,-~) + "'" 

+ P(A')P(.4',+ N... .4"+~) - (5 + ~)P(A',) 

P(A',)[P(A;+N ... ~4',+~) - (5 + e)] 

n--~ O0 i = H  
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P(limsup An)= lim P (  0 
n"*~ \ i=n 

which concludes the proof 

A~) = > 1 - 6 

Israel J. Math., 

2. Application to denumerable Markov chains 

THEOREM 2. Let {X,: n __> 1} be a denumerable inhomogeneous Markov chain, 

{ai: i => 1} the set of its states, p~n)= P{X,  = ai}, --ijP(n'k)---- P{X,+ k = ajl X n = a,} 
_(n) and B a subset of states . I f  ~,n=l ~(j:~j~,) ~'j = 0% then 

P{X n ~ B infinitely often} >= 1 - 6 

where 

= 

]~ (n) _(n+l) (n,l) + 
Pj (Pi Pj,i ) 

lim lira sup '  = 1 (j :a~ ~ B) 
I~oo noc~ ~ _(n) 

F j  
(y :.~ e B) 

The proof follows directly from Theorem 1. 

3. Application to the arc sine law 

We now give a simple proof of the "divergent" part of the "strong theorem" 

corresponding to the arc sine law. This theorem was proved using a Borel-Cantelli 

type lemma by Chung and ErdOs [5]. 

THEOREM 3. Let {X,: n > 1} be a sequence of independent random variables 

and each Xn assume the values + 1 and - 1 with probabilities �89 and �89 Let 

Sn = ~ =  x Xi and N n the number of positive sums amon9 S 1, $2, "", S,,. I f  ~(n) is 

an increasin9 function of n and i f  

,=1 n~(n) ~ 
m - - ~ O  0 

then 

= O ( n )  i .o .  = 1 

PROOF. As in [5] we shall consider the events 

(6) E k : { S 2 k = O ,  S i<O f o r 2 k < i < 2 k ~ ( k ) }  (k : 1,2,-. .)  

Then P{Ek} "~ Ak -~, A being a positive constant, and to prove (5) it will be 

sufficient to show that P{E, i.o.} = 1 ( [ 5 ] ) .  
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From (6) we get that, for m <_ k 6 ( k )  and m > k, P{EkE,,}  = O. 

Therefore, to prove the theorem by applying Theorem 1 to the sequence of  

events {Ek: k > 1} derived from the Markov chain (S,: n > 1}, it will be enough 

to show that the condition (]I) is satisfied. 

Considering (1) for I = 1, we are led to the expression 

0 
E 

(7) i=-(2k~(k)+l) 
(P{S2R~,(k)+ , = i} - P{S2aq,(k)+ 1 = i] Szk = O, Si < O, 

2k < i _-< 2k~b(k)}) + 

The condition (II) will be satisfied if we shall prove that for any a and b with 

a < 0, b < 0, a < b and k sufficiently large, we have 

(8) ]~ (P{Sakq,(k)+, = i} -- P{S2ac,(a)+, = i[ S2k = O, Si < O, 2k < i < 2kt~(k)}) + _-< 
i~Ak 

with ~ < �89 where A k = (ax/2k~,(k)  + 1, b~/2k~b(k) + 1) . 

But it is easy to see that 

P{S2kqt(k)+ 1 "~ i[ S2k = O, S i . (  O, 2k < i <= 2k~(k)} 

P{S2k = O} 
(9) = P{S2k(q~(k)-l)+l=i' S1 < O ' ' ' " S 2 k ( ~ ( k ) - l ) <  0} P{Ek} 

On the other hand 

P{S2k(r = i, S 1 < O, "-',S2k(~(k)_l)< O} 

(lo) 
12 2k(~,(k) - 1) 

]i] k ( 6 ( k )  1) + i 
- 2k(~(k) - 1) 2 

2-2k(~(k) - l )  

the last equality being a consequence of theorem 1, p. 70 [6]. 

As for the first term of (8), one has 

(11) 
( 2 k ~ ( k ) + l  t 

Reminding now tha t  P{G}...Ak-~(q4k)) -~, P{S2k =0} ~. (1/nk)~, and  

making use of  (9) and (10), we get for k sufficiently large 

P{S2kc,(k)+ , = i[ S2a = O, S i < O, 2k  < i <= 2k~(k)} 

r 2k(6(k)-1) -~ 
(,2) c[i] 12k(r 

k§  1~ 2 J 2 - 2 k ( O ( k ) -  1) 
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C being a positive constant. Using now the well known binomial approximation 

to the normal distribution, we get (8). Therefore, fi < 1. Employing now the 

0 -  1 law, we conclude the proof. 

REMARK. 1) It is possible to use Theorem 1 for proving the above Theorem 

under suitable conditions in the case of random variables having continuous 

distribution functions. 

2) It would be interesting to find the conditions under which Theorem 1 applies 

to derive "strong bounds" for sequences of independent random variables of the 

type considered in [-8]. Using the Chung-Erd6s variant of Borel-Cantelli lemma, 

such a way was follows by M. Lipschutz [10]. 
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